Convex Tensor Decomposition via Structured Schatten Norm Regularization

03/26/2013
by   Ryota Tomioka, et al.
0

We discuss structured Schatten norms for tensor decomposition that includes two recently proposed norms ("overlapped" and "latent") for convex-optimization-based tensor decomposition, and connect tensor decomposition with wider literature on structured sparsity. Based on the properties of the structured Schatten norms, we mathematically analyze the performance of "latent" approach for tensor decomposition, which was empirically found to perform better than the "overlapped" approach in some settings. We show theoretically that this is indeed the case. In particular, when the unknown true tensor is low-rank in a specific mode, this approach performs as good as knowing the mode with the smallest rank. Along the way, we show a novel duality result for structures Schatten norms, establish the consistency, and discuss the identifiability of this approach. We confirm through numerical simulations that our theoretical prediction can precisely predict the scaling behavior of the mean squared error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset