Convex Hull Approximation of Nearly Optimal Lasso Solutions

10/14/2018
by   Satoshi Hara, et al.
0

In an ordinary feature selection procedure, a set of important features is obtained by solving an optimization problem such as the Lasso regression problem, and we expect that the obtained features explain the data well. In this study, instead of the single optimal solution, we consider finding a set of diverse yet nearly optimal solutions. To this end, we formulate the problem as finding a small number of solutions such that the convex hull of these solutions approximates the set of nearly optimal solutions. The proposed algorithm consists of two steps: First, we randomly sample the extreme points of the set of nearly optimal solutions. Then, we select a small number of points using a greedy algorithm. The experimental results indicate that the proposed algorithm can approximate the solution set well. The results also indicate that we can obtain Lasso solutions with a large diversity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset