Convergence to Lexicographically Optimal Base in a (Contra)Polymatroid and Applications to Densest Subgraph and Tree Packing

05/04/2023
by   Elfarouk Harb, et al.
0

Boob et al. [1] described an iterative peeling algorithm called Greedy++ for the Densest Subgraph Problem (DSG) and conjectured that it converges to an optimum solution. Chekuri, Quanrud, and Torres [2] extended the algorithm to general supermodular density problems (of which DSG is a special case) and proved that the resulting algorithm Super-Greedy++ (and hence also Greedy++) converges. In this paper, we revisit the convergence proof and provide a different perspective. This is done via a connection to Fujishige's quadratic program for finding a lexicographically optimal base in a (contra)polymatroid [3], and a noisy version of the Frank-Wolfe method from convex optimisation [4,5]. This gives us a simpler convergence proof, and also shows a stronger property that Super-Greedy++ converges to the optimal dense decomposition vector, answering a question raised in Harb et al. [6]. A second contribution of the paper is to understand Thorup's work on ideal tree packing and greedy tree packing [7,8] via the Frank-Wolfe algorithm applied to find a lexicographically optimum base in the graphic matroid. This yields a simpler and transparent proof. The two results appear disparate but are unified via Fujishige's result and convex optimisation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset