Convergence of Deep Fictitious Play for Stochastic Differential Games

08/12/2020
by   Jiequn Han, et al.
0

Stochastic differential games have been used extensively to model agents' competitions in Finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed machine learning algorithm, deep fictitious play, provides a novel efficient tool for finding Markovian Nash equilibrium of large N-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into N sub-optimization problems, and identifies each player's optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, under appropriate conditions, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an ϵ-Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset