Convergence of a spectral regularization of a time-reversed reaction-diffusion problem with high-order Sobolev-Gevrey smoothness

09/07/2021
by   Vo Anh Khoa, et al.
0

The present paper analyzes a spectral regularization of a time-reversed reaction-diffusion problem with globally and locally Lipschitz nonlinearities. This type of inverse and ill-posed problems arises in a variety of real-world applications concerning heat conduction and tumour source localization. In accordance with the weak solvability result for the forward problem, we focus on the inverse problem with high-order Sobolev-Gevrey smoothness and with Sobolev measurements. As expected from the well-known results for the linear case, we prove that this nonlinear spectral regularization possesses a logarithmic rate of convergence in a high-order Sobolev norm. The proof can be done by the verification of variational source condition; this way validates such a fine strategy in the framework of inverse problems for nonlinear partial differential equations. Ultimately, we study a semi-discrete version of the regularization method for a class of reaction-diffusion problems with non-degenerate nonlinearity. The convergence of this iterative scheme is also investigated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro