Convergence analysis of explicit stabilized integrators for parabolic semilinear stochastic PDEs

02/05/2021
by   Assyr Abdulle, et al.
0

Explicit stabilized integrators are an efficient alternative to implicit or semi-implicit methods to avoid the severe timestep restriction faced by standard explicit integrators applied to stiff diffusion problems. In this paper, we provide a fully discrete strong convergence analysis of a family of explicit stabilized methods coupled with finite element methods for a class of parabolic semilinear deterministic and stochastic partial differential equations. Numerical experiments including the semilinear stochastic heat equation with space-time white noise confirm the theoretical findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset