Controlled Natural Language Processing as Answer Set Programming: an Experiment

07/15/2014
by   Rolf Schwitter, et al.
0

Most controlled natural languages (CNLs) are processed with the help of a pipeline architecture that relies on different software components. We investigate in this paper in an experimental way how well answer set programming (ASP) is suited as a unifying framework for parsing a CNL, deriving a formal representation for the resulting syntax trees, and for reasoning with that representation. We start from a list of input tokens in ASP notation and show how this input can be transformed into a syntax tree using an ASP grammar and then into reified ASP rules in form of a set of facts. These facts are then processed by an ASP meta-interpreter that allows us to infer new knowledge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro