DeepAI
Log In Sign Up

Controllable cardiac synthesis via disentangled anatomy arithmetic

07/04/2021
by   Spyridon Thermos, et al.
12

Acquiring annotated data at scale with rare diseases or conditions remains a challenge. It would be extremely useful to have a method that controllably synthesizes images that can correct such underrepresentation. Assuming a proper latent representation, the idea of a "latent vector arithmetic" could offer the means of achieving such synthesis. A proper representation must encode the fidelity of the input data, preserve invariance and equivariance, and permit arithmetic operations. Motivated by the ability to disentangle images into spatial anatomy (tensor) factors and accompanying imaging (vector) representations, we propose a framework termed "disentangled anatomy arithmetic", in which a generative model learns to combine anatomical factors of different input images such that when they are re-entangled with the desired imaging modality (e.g. MRI), plausible new cardiac images are created with the target characteristics. To encourage a realistic combination of anatomy factors after the arithmetic step, we propose a localized noise injection network that precedes the generator. Our model is used to generate realistic images, pathology labels, and segmentation masks that are used to augment the existing datasets and subsequently improve post-hoc classification and segmentation tasks. Code is publicly available at https://github.com/vios-s/DAA-GAN.

READ FULL TEXT

page 2

page 8

page 12

page 13

03/22/2019

Factorised Representation Learning in Cardiac Image Analysis

Typically, a medical image offers spatial information on the anatomy (an...
01/13/2020

High-Fidelity Synthesis with Disentangled Representation

Learning disentangled representation of data without supervision is an i...
09/01/2022

Learning correspondences of cardiac motion from images using biomechanics-informed modeling

Learning spatial-temporal correspondences in cardiac motion from images ...
05/18/2020

On the effectiveness of GAN generated cardiac MRIs for segmentation

In this work, we propose a Variational Autoencoder (VAE) - Generative Ad...
07/01/2020

Swapping Autoencoder for Deep Image Manipulation

Deep generative models have become increasingly effective at producing r...
09/07/2022

Morphology-preserving Autoregressive 3D Generative Modelling of the Brain

Human anatomy, morphology, and associated diseases can be studied using ...