Contrastive Explanations for Explaining Model Adaptations

04/06/2021
by   André Artelt, et al.
0

Many decision making systems deployed in the real world are not static - a phenomenon known as model adaptation takes place over time. The need for transparency and interpretability of AI-based decision models is widely accepted and thus have been worked on extensively. Usually, explanation methods assume a static system that has to be explained. Explaining non-static systems is still an open research question, which poses the challenge how to explain model adaptations. In this contribution, we propose and (empirically) evaluate a framework for explaining model adaptations by contrastive explanations. We also propose a method for automatically finding regions in data space that are affected by a given model adaptation and thus should be explained.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro