Contralaterally Enhanced Networks for Thoracic Disease Detection

by   Gangming Zhao, et al.

Identifying and locating diseases in chest X-rays are very challenging, due to the low visual contrast between normal and abnormal regions, and distortions caused by other overlapping tissues. An interesting phenomenon is that there exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes. This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists. Aimed at improving the performance of existing detection methods, we propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals. First of all, under the guidance of the spine line, the spatial transformer network is employed to extract local contralateral patches, which can provide valuable context information for disease proposals. Then, we build up a specific module, based on both additive and subtractive operations, to fuse the features of the disease proposal and the contralateral patch. Our method can be integrated into both fully and weakly supervised disease detection frameworks. It achieves 33.17 AP50 on a carefully annotated private chest X-ray dataset which contains 31,000 images. Experiments on the NIH chest X-ray dataset indicate that our method achieves state-of-the-art performance in weakly-supervised disease localization.


page 1

page 3

page 4

page 5

page 7

page 8

page 9


ChestX-det10: Chest X-ray Dataset on Detection of Thoracic Abnormalities

Instance level detection of thoracic diseases or abnormalities are cruci...

Weakly Supervised Thoracic Disease Localization via Disease Masks

To enable a deep learning-based system to be used in the medical domain ...

GREN: Graph-Regularized Embedding Network for Weakly-Supervised Disease Localization in X-ray images

Locating diseases in chest X-ray images with few careful annotations sav...

Weighing Features of Lung and Heart Regions for Thoracic Disease Classification

Chest X-rays are the most commonly available and affordable radiological...

A Structure-Aware Relation Network for Thoracic Diseases Detection and Segmentation

Instance level detection and segmentation of thoracic diseases or abnorm...

ImageGCN: Multi-Relational Image Graph Convolutional Networks for Disease Identification with Chest X-rays

Image representation is a fundamental task in computer vision. However, ...

Please sign up or login with your details

Forgot password? Click here to reset