Continuous Prompt Tuning Based Textual Entailment Model for E-commerce Entity Typing
The explosion of e-commerce has caused the need for processing and analysis of product titles, like entity typing in product titles. However, the rapid activity in e-commerce has led to the rapid emergence of new entities, which is difficult to be solved by general entity typing. Besides, product titles in e-commerce have very different language styles from text data in general domain. In order to handle new entities in product titles and address the special language styles problem of product titles in e-commerce domain, we propose our textual entailment model with continuous prompt tuning based hypotheses and fusion embeddings for e-commerce entity typing. First, we reformulate the entity typing task into a textual entailment problem to handle new entities that are not present during training. Second, we design a model to automatically generate textual entailment hypotheses using a continuous prompt tuning method, which can generate better textual entailment hypotheses without manual design. Third, we utilize the fusion embeddings of BERT embedding and CharacterBERT embedding with a two-layer MLP classifier to solve the problem that the language styles of product titles in e-commerce are different from that of general domain. To analyze the effect of each contribution, we compare the performance of entity typing and textual entailment model, and conduct ablation studies on continuous prompt tuning and fusion embeddings. We also evaluate the impact of different prompt template initialization for the continuous prompt tuning. We show our proposed model improves the average F1 score by around 2
READ FULL TEXT