DDPG
Reimplementation of DDPG(Continuous Control with Deep Reinforcement Learning) based on OpenAI Gym + Tensorflow
view repo
We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain. We present an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces. Using the same learning algorithm, network architecture and hyper-parameters, our algorithm robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged locomotion and car driving. Our algorithm is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain and its derivatives. We further demonstrate that for many of the tasks the algorithm can learn policies end-to-end: directly from raw pixel inputs.
READ FULL TEXTReimplementation of DDPG(Continuous Control with Deep Reinforcement Learning) based on OpenAI Gym + Tensorflow
Continuous control with deep reinforcement learning - Deep Deterministic Policy Gradient (DDPG) algorithm implemented in OpenAI Gym environments
Deterministic Policy Gradient using torch7
Using deep reinforcement learning (DDPG & A3C) to solve Acrobot
DDPG on OpenAI Gym Pendulum