Continual Learning in Practice

03/12/2019 ∙ by Tom Diethe, et al. ∙ 0

This paper describes a reference architecture for self-maintaining systems that can learn continually, as data arrives. In environments where data evolves, we need architectures that manage Machine Learning (ML) models in production, adapt to shifting data distributions, cope with outliers, retrain when necessary, and adapt to new tasks. This represents continual AutoML or Automatically Adaptive Machine Learning. We describe the challenges and proposes a reference architecture.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.