Contextual BERT: Conditioning the Language Model Using a Global State

10/29/2020 ∙ by Timo I. Denk, et al. ∙ 0

BERT is a popular language model whose main pre-training task is to fill in the blank, i.e., predicting a word that was masked out of a sentence, based on the remaining words. In some applications, however, having an additional context can help the model make the right prediction, e.g., by taking the domain or the time of writing into account. This motivates us to advance the BERT architecture by adding a global state for conditioning on a fixed-sized context. We present our two novel approaches and apply them to an industry use-case, where we complete fashion outfits with missing articles, conditioned on a specific customer. An experimental comparison to other methods from the literature shows that our methods improve personalization significantly.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.