Contextual Bandits Evolving Over Finite Time

11/14/2019 ∙ by Harsh Deshpande, et al. ∙ 0

Contextual bandits have the same exploration-exploitation trade-off as standard multi-armed bandits. On adding positive externalities that decay with time, this problem becomes much more difficult as wrong decisions at the start are hard to recover from. We explore existing policies in this setting and highlight their biases towards the inherent reward matrix. We propose a rejection based policy that achieves a low regret irrespective of the structure of the reward probability matrix.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.