Context-Dependent Anomaly Detection with Knowledge Graph Embedding Models

03/17/2022
by   Nathan Vaska, et al.
0

Increasing the semantic understanding and contextual awareness of machine learning models is important for improving robustness and reducing susceptibility to data shifts. In this work, we leverage contextual awareness for the anomaly detection problem. Although graphed-based anomaly detection has been widely studied, context-dependent anomaly detection is an open problem and without much current research. We develop a general framework for converting a context-dependent anomaly detection problem to a link prediction problem, allowing well-established techniques from this domain to be applied. We implement a system based on our framework that utilizes knowledge graph embedding models and demonstrates the ability to detect outliers using context provided by a semantic knowledge base. We show that our method can detect context-dependent anomalies with a high degree of accuracy and show that current object detectors can detect enough classes to provide the needed context for good performance within our example domain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset