Context-Attentive Embeddings for Improved Sentence Representations
While one of the first steps in many NLP systems is selecting what embeddings to use, we argue that such a step is better left for neural networks to figure out by themselves. To that end, we introduce a novel, straightforward yet highly effective method for combining multiple types of word embeddings in a single model, leading to state-of-the-art performance within the same model class on a variety of tasks. We subsequently show how the technique can be used to shed new insight into the usage of word embeddings in NLP systems.
READ FULL TEXT