Content Popularity Prediction Towards Location-Aware Mobile Edge Caching
Mobile edge caching enables content delivery within the radio access network, which effectively alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources, the most popular contents should be identified and cached. Observing that user demands on certain contents vary greatly at different locations, this paper devises location-customized caching schemes to maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit rate. For the case where the model noise is zero-mean, a ridge regression based online algorithm with positive perturbation is proposed. Regret analysis indicates that the proposed algorithm asymptotically approaches the optimal caching strategy in the long run. When the noise structure is unknown, an H_∞ filter based online algorithm is further proposed by taking a prescribed threshold as input, which guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require no training phases, and hence are robust to the time-varying user demands. The underlying causes of estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments on real world dataset are conducted to validate the applicability of the proposed algorithms. It is demonstrated that those algorithms can be applied to scenarios with different noise features, and are able to make adaptive caching decisions, achieving content hit rate that is comparable to that via the hindsight optimal strategy.
READ FULL TEXT