Construction of a minimum energy path for the VT flash model by an exponential time differencing scheme with the string method

08/07/2020
by   Yuze Zhang, et al.
0

Phase equilibrium calculation, also known as flash calculation, plays significant roles in various aspects of petroleum and chemical industries. Since Michelsen proposed his milestone studies in 1982, through several decades of development, the current research interest on flash calculation has been shifted from accuracy to efficiency, but the ultimate goal remains the same focusing on estimation of the equilibrium phase amounts and phase compositions under the given variable specification. However, finding the transition route and its related saddle points are very often helpful to study the evolution of phase change and partition. Motivated by this, in this study we apply the string method to find the minimum energy paths and saddle points information of a single-component VT flash model with the Peng-Robinson equation of state. As the system has strong stiffness, common ordinary differential equation solvers have their limitations. To overcome these issues, a Rosenbrock-type exponential time differencing scheme is employed to reduce the computational difficulty caused by the high stiffness of the investigated system. In comparison with the published results and experimental data, the proposed numerical algorithm not only shows good feasibility and accuracy on phase equilibrium calculation, but also successfully calculates the minimum energy path and and saddle point of the single-component VT flash model with strong stiffness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset