Constructing Higher Inductive Types as Groupoid Quotients

02/19/2020
by   Niels van der Weide, et al.
0

In this paper, we show that all finitary 1-truncated higher inductive types (HITs) can be constructed from the groupoid quotient. We start by defining internally a notion of signatures for HITs, and for each signature, we construct a bicategory of algebras in 1-types and in groupoids. We continue by proving initial algebra semantics for our signatures. After that, we show that the groupoid quotient induces a biadjunction between the bicategories of algebras in 1-types and in groupoids. We finish by constructing a biinitial object in the bicategory of algebras in groupoids. From all this, we conclude that all finitary 1-truncated HITs can be constructed from the groupoid quotient. All the results are formalized over the UniMath library of univalent mathematics in Coq.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset