Constraint-Based Inference in Probabilistic Logic Programs

by   Arun Nampally, et al.

Probabilistic Logic Programs (PLPs) generalize traditional logic programs and allow the encoding of models combining logical structure and uncertainty. In PLP, inference is performed by summarizing the possible worlds which entail the query in a suitable data structure, and using it to compute the answer probability. Systems such as ProbLog, PITA, etc., use propositional data structures like explanation graphs, BDDs, SDDs, etc., to represent the possible worlds. While this approach saves inference time due to substructure sharing, there are a number of problems where a more compact data structure is possible. We propose a data structure called Ordered Symbolic Derivation Diagram (OSDD) which captures the possible worlds by means of constraint formulas. We describe a program transformation technique to construct OSDDs via query evaluation, and give procedures to perform exact and approximate inference over OSDDs. Our approach has two key properties. Firstly, the exact inference procedure is a generalization of traditional inference, and results in speedup over the latter in certain settings. Secondly, the approximate technique is a generalization of likelihood weighting in Bayesian Networks, and allows us to perform sampling-based inference with lower rejection rate and variance. We evaluate the effectiveness of the proposed techniques through experiments on several problems. This paper is under consideration for acceptance in TPLP.


page 1

page 2

page 3

page 4


Symbolic Exact Inference for Discrete Probabilistic Programs

The computational burden of probabilistic inference remains a hurdle for...

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge

We present CLP(BN), a novel approach that aims at expressing Bayesian ne...

Inference in Probabilistic Logic Programs with Continuous Random Variables

Probabilistic Logic Programming (PLP), exemplified by Sato and Kameya's ...

PASOCS: A Parallel Approximate Solver for Probabilistic Logic Programs under the Credal Semantics

The Credal semantics is a probabilistic extension of the answer set sema...

Top-down and Bottom-up Evaluation Procedurally Integrated

This paper describes how XSB combines top-down and bottom-up computation...

Semi-Symbolic Inference for Efficient Streaming Probabilistic Programming

Efficient inference is often possible in a streaming context using Rao-B...

Why is Compiling Lifted Inference into a Low-Level Language so Effective?

First-order knowledge compilation techniques have proven efficient for l...

Please sign up or login with your details

Forgot password? Click here to reset