Constrained Thompson Sampling for Wireless Link Optimization

02/28/2019
by   Vidit Saxena, et al.
0

Wireless communication systems operate in complex time-varying environments. Therefore, selecting the optimal configuration parameters in these systems is a challenging problem. For wireless links, rate selection is used to select the optimal data transmission rate that maximizes the link throughput subject to an application-defined latency constraint. We model rate selection as a stochastic multi-armed bandit (MAB) problem, where a finite set of transmission rates are modeled as independent bandit arms. For this setup, we propose Con-TS, a novel constrained version of the Thompson sampling algorithm, where the latency requirement is modeled by a linear constraint on arm selection probabilities. Since our algorithm learns a Bayesian model of the wireless link, it can be adapted to exploit prior knowledge often available in practical wireless networks. Through numerical results from simulated experiments, we demonstrate that Con-TS significantly outperforms state-of-the-art bandit algorithms proposed in the literature. Further, we compare Con-TS with the outer loop link adaptation (OLLA) scheme, which is the state-of-the-art in practical wireless networks and relies on carefully tuned offline link models. We show that Con-TS outperforms OLLA in simulations, further, it can elegantly incorporate information from the offline link models to substantially improve performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset