Constrained de Bruijn Codes: Properties, Enumeration, Constructions, and Applications

05/06/2020
by   Yeow Meng Chee, et al.
0

The de Bruijn graph, its sequences, and their various generalizations, have found many applications in information theory, including many new ones in the last decade. In this paper, motivated by a coding problem for emerging memory technologies, a set of sequences which generalize sequences in the de Bruijn graph are defined. These sequences can be also defined and viewed as constrained sequences. Hence, they will be called constrained de Bruijn sequences and a set of such sequences will be called a constrained de Bruijn code. Several properties and alternative definitions for such codes are examined and they are analyzed as generalized sequences in the de Bruijn graph (and its generalization) and as constrained sequences. Various enumeration techniques are used to compute the total number of sequences for any given set of parameters. A construction method of such codes from the theory of shift-register sequences is proposed. Finally, we show how these constrained de Bruijn sequences and codes can be applied in constructions of codes for correcting synchronization errors in the ℓ-symbol read channel and in the racetrack memory channel. For this purpose, these codes are superior in their size on previously known codes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset