Constrained Bayesian Optimization for Automatic Chemical Design

09/16/2017 ∙ by Ryan-Rhys Griffiths, et al. ∙ 0

Automatic Chemical Design leverages recent advances in deep generative modelling to provide a framework for performing continuous optimization of molecular properties. Although the provision of a continuous representation for prospective lead drug candidates has opened the door to hitherto inaccessible tools of mathematical optimization, some challenges remain for the design process. One known pathology is the model's tendency to decode invalid molecular structures. The goal of this thesis is to test the hypothesis that the origin of this pathology is rooted in the current formulation of Bayesian optimization. Recasting the optimization procedure as a constrained Bayesian optimization problem results in novel drug compounds produced by the model consistently ranking in the 100th percentile of the distribution over training set scores.



page 4

page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.