Conservative numerical schemes with optimal dispersive wave relations – Part II. Numerical evaluations

02/06/2020
by   Qingshan Chen, et al.
0

A new energy and enstrophy conserving scheme is evaluated using a suite of test cases over the global spherical domain or bounded domains. The evaluation is organized around a set of pre-defined properties: accuracy of individual opeartors, accuracy of the whole scheme, conservation, control of the divergence variable, representation of the energy and enstrophy spectra, and simulation of nonlinear dynamics. The results confirm that the scheme is between the first and second order accurate, and conserves the total energy and potential enstrophy up to the time truncation errors. The scheme is capable of producing more physically realistic energy and enstrophy spectra, indicating that the new scheme can help prevent the unphysical energy cascade towards the finest resolvable scales. With an optimal representation of the dispersive wave relations, the scheme is able to keep the flow close to being non-divergent, maintain the geostrophically balanced structures with large-scale geophysical flows over long-term simulations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset