Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs

We generalize the concept of maximum-margin classifiers (MMCs) to arbitrary norms and non-linear functions. Support Vector Machines (SVMs) are a special case of MMC. We find that MMCs can be formulated as Integral Probability Metrics (IPMs) or classifiers with some form of gradient norm penalty. This implies a direct link to a class of Generative adversarial networks (GANs) which penalize a gradient norm. We show that the Discriminator in Wasserstein, Standard, Least-Squares, and Hinge GAN with Gradient Penalty is an MMC. We explain why maximizing a margin may be helpful in GANs. We hypothesize and confirm experimentally that L^∞-norm penalties with Hinge loss produce better GANs than L^2-norm penalties (based on common evaluation metrics). We derive the margins of Relativistic paired (Rp) and average (Ra) GANs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset