Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning

07/04/2018 ∙ by Guillaume Rabusseau, et al. ∙ 0

In this paper, we unravel a fundamental connection between weighted finite automata (WFAs) and second-order recurrent neural networks (2-RNNs): in the case of sequences of discrete symbols, WFAs and 2-RNNs with linear activation functions are expressively equivalent. Motivated by this result, we build upon a recent extension of the spectral learning algorithm to vector-valued WFAs and propose the first provable learning algorithm for linear 2-RNNs defined over sequences of continuous input vectors. This algorithm relies on estimating low rank sub-blocks of the so-called Hankel tensor, from which the parameters of a linear 2-RNN can be provably recovered. The performances of the proposed method are assessed in a simulation study.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.