Connecting Graph Convolutional Networks and Graph-Regularized PCA

06/22/2020
by   Lingxiao Zhao, et al.
0

Graph convolution operator of the GCN model is originally motivated from a localized first-order approximation of spectral graph convolutions.This work stands on a different view; establishing a connection between graph convolution and graph-regularized PCA. Based on this connection, GCN architecture, shaped by stacking graph convolution layers, shares a close relationship with stacking graph-regularized PCA (GPCA). We empirically demonstrate that the unsupervised embeddings by GPCA paired with a logistic regression classifier achieves similar performance to GCN on semi-supervised node classification tasks. Further, we capitalize on the discovered relationship to design an effective initialization strategy for GCN based on stacking GPCA.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset