Conic Descent Redux for Memory-Efficient Optimization

08/13/2023
by   Bingcong Li, et al.
0

Conic programming has well-documented merits in a gamut of signal processing and machine learning tasks. This contribution revisits a recently developed first-order conic descent (CD) solver, and advances it in three aspects: intuition, theory, and algorithmic implementation. It is found that CD can afford an intuitive geometric derivation that originates from the dual problem. This opens the door to novel algorithmic designs, with a momentum variant of CD, momentum conic descent (MOCO) exemplified. Diving deeper into the dual behavior CD and MOCO reveals: i) an analytically justified stopping criterion; and, ii) the potential to design preconditioners to speed up dual convergence. Lastly, to scale semidefinite programming (SDP) especially for low-rank solutions, a memory efficient MOCO variant is developed and numerically validated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro