Confounding Ghost Channels and Causality: A New Approach to Causal Information Flows

07/06/2020 ∙ by Nihat Ay, et al. ∙ 0

Information theory provides a fundamental framework for the quantification of information flows through channels, formally Markov kernels. However, quantities such as mutual information and conditional mutual information do not necessarily reflect the causal nature of such flows. We argue that this is often the result of conditioning based on sigma algebras that are not associated with the given channels. We propose a version of the (conditional) mutual information based on families of sigma algebras that are coupled with the underlying channel. This leads to filtrations which allow us to prove a corresponding causal chain rule as a basic requirement within the presented approach.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.