Confounder Balancing for Instrumental Variable Regression with Latent Variable
This paper studies the confounding effects from the unmeasured confounders and the imbalance of observed confounders in IV regression and aims at unbiased causal effect estimation. Recently, nonlinear IV estimators were proposed to allow for nonlinear model in both stages. However, the observed confounders may be imbalanced in stage 2, which could still lead to biased treatment effect estimation in certain cases. To this end, we propose a Confounder Balanced IV Regression (CB-IV) algorithm to jointly remove the bias from the unmeasured confounders and the imbalance of observed confounders. Theoretically, by redefining and solving an inverse problem for potential outcome function, we show that our CB-IV algorithm can unbiasedly estimate treatment effects and achieve lower variance. The IV methods have a major disadvantage in that little prior or theory is currently available to pre-define a valid IV in real-world scenarios. Thus, we study two more challenging settings without pre-defined valid IVs: (1) indistinguishable IVs implicitly present in observations, i.e., mixed-variable challenge, and (2) latent IVs don't appear in observations, i.e., latent-variable challenge. To address these two challenges, we extend our CB-IV by a latent-variable module, namely CB-IV-L algorithm. Extensive experiments demonstrate that our CB-IV(-L) outperforms the existing approaches.
READ FULL TEXT