Conforming finite element DIVDIV complexes and the application for the linearized Einstein-Bianchi system

02/26/2021
βˆ™
by   Jun Hu, et al.
βˆ™
0
βˆ™

This paper presents the first family of conforming finite element divdiv complexes on tetrahedral grids in three dimensions. In these complexes, finite element spaces of H(divdiv,Ξ©;π•Š) are from a current preprint [Chen and Huang, arXiv: 2007.12399, 2020] while finite element spaces of both H(symcurl,Ξ©;𝕋) and H^1(Ξ©;ℝ^3) are newly constructed here. It is proved that these finite element complexes are exact. As a result, they can be used to discretize the linearized Einstein-Bianchi system within the dual formulation.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
βˆ™ 04/17/2022

New conforming finite element divdiv complexes in three dimensions

In this paper, the first family of conforming finite element divdiv comp...
research
βˆ™ 02/07/2023

Finite element grad grad complexes and elasticity complexes on cuboid meshes

This paper constructs two conforming finite element grad grad and elasti...
research
βˆ™ 01/13/2021

UFL Dual Spaces, a proposal

This white paper highlights current limitations in the algebraic closure...
research
βˆ™ 03/27/2021

A Construction of C^r Conforming Finite Element Spaces in Any Dimension

This paper proposes a construction of local C^r interpolation spaces and...
research
βˆ™ 08/11/2020

A General Superapproximation Result

A general superapproximation result is derived in this paper which is us...
research
βˆ™ 11/14/2018

How to get meaningful and correct results from your finite element model

This document gives guidelines to set up, run, and postprocess correct s...
research
βˆ™ 08/03/2023

Finite element approximation of the Hardy constant

We consider finite element approximations to the optimal constant for th...

Please sign up or login with your details

Forgot password? Click here to reset