Conformance checking: A state-of-the-art literature review

07/21/2020 ∙ by Sebastian Dunzer, et al. ∙ 0

Conformance checking is a set of process mining functions that compare process instances with a given process model. It identifies deviations between the process instances' actual behaviour ("as-is") and its modelled behaviour ("to-be"). Especially in the context of analyzing compliance in organizations, it is currently gaining momentum – e.g. for auditors. Researchers have proposed a variety of conformance checking techniques that are geared towards certain process model notations or specific applications such as process model evaluation. This article reviews a set of conformance checking techniques described in 37 scholarly publications. It classifies the techniques along the dimensions "modelling language", "algorithm type", "quality metric", and "perspective" using a concept matrix so that the techniques can be better accessed by practitioners and researchers. The matrix highlights the dimensions where extant research concentrates and where blind spots exist. For instance, process miners use declarative process modelling languages often, but applications in conformance checking are rare. Likewise, process mining can investigate process roles or process metrics such as duration, but conformance checking techniques narrow on analyzing control-flow. Future research may construct techniques that support these neglected approaches to conformance checking.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.