Conformal Surface Morphing with Applications on Facial Expressions
Morphing is the process of changing one figure into another. Some numerical methods of 3D surface morphing by deformable modeling and conformal mapping are shown in this study. It is well known that there exists a unique Riemann conformal mapping from a simply connected surface into a unit disk by the Riemann mapping theorem. The dilation and relative orientations of the 3D surfaces can be linked through the Möbius transformation due to the conformal characteristic of the Riemann mapping. On the other hand, a 3D surface deformable model can be built via various approaches such as mutual parameterization from direct interpolation or surface matching using landmarks. In this paper, we take the advantage of the unique representation of 3D surfaces by the mean curvatures and the conformal factors associated with the Riemann mapping. By registering the landmarks on the conformal parametric domains, the correspondence of the mean curvatures and the conformal factors for each surfaces can be obtained. As a result, we can construct the 3D deformation field from the surface reconstruction algorithm proposed by Gu and Yau. Furthermore, by composition of the Möbius transformation and the 3D deformation field, the morphing sequence can be generated from the mean curvatures and the conformal factors on a unified mesh structure by using the cubic spline homotopy. Several numerical experiments of the face morphing are presented to demonstrate the robustness of our approach.
READ FULL TEXT