Confidence Intervals for Ratios of Proportions in Stratified Bilateral Correlated Data

03/23/2023
by   Wanqing Tian, et al.
0

Confidence interval (CI) methods for stratified bilateral studies use intraclass correlation to avoid misleading results. In this article, we propose four CI methods (sample-size weighted global MLE-based Wald-type CI, complete MLE-based Wald-type CI, profile likelihood CI, and complete MLE-based score CI) to investigate CIs of proportion ratios to clinical trial design with stratified bilateral data under Dallal's intraclass model. Monte Carlo simulations are performed, and the complete MLE-based score confidence interval (CS) method yields a robust outcome. Lastly, a real data example is conducted to illustrate the proposed four CIs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro