Conditional distribution variability measures for causality detection
In this paper we derive variability measures for the conditional probability distributions of a pair of random variables, and we study its application in the inference of causal-effect relationships. We also study the combination of the proposed measures with standard statistical measures in the the framework of the ChaLearn cause-effect pair challenge. The developed model obtains an AUC score of 0.82 on the final test database and ranked second in the challenge.
READ FULL TEXT