Condition numbers for the truncated total least squares problem and their estimations
In this paper, we present explicit expressions for the mixed and componentwise condition numbers of the truncated total least squares (TTLS) solution of Ax≈b under the genericity condition, where A is a m× n real data matrix and b is a real m-vector. Moreover, we reveal that normwise, componentwise and mixed condition numbers for the TTLS problem can recover the previous corresponding counterparts for the total least squares (TLS) problem when the truncated level of for the TTLS problem is n. When A is a structured matrix, the structured perturbations for the structured truncated TLS (STTLS) problem are investigated and the corresponding explicit expressions for the structured normwise, componentwise and mixed condition numbers for the STTLS problem are obtained. Furthermore, the relationships between the structured and unstructured normwise, componentwise and mixed condition numbers for the STTLS problem are studied. Based on small sample statistical condition estimation (SCE), reliable condition estimation algorithms for both unstructured and structured normwise, mixed and componentwise are devised, which utilize the SVD of the augmented matrix [A b ]. The efficient proposed condition estimation algorithms can be integrated into the SVD-based direct solver for the small and medium size TTLS problem to give the error estimation for the numerical TTLS solution. Numerical experiments are reported to illustrate the reliability of the proposed estimation algorithms, which coincide with our theoretical results.
READ FULL TEXT