Concurrent Classifier Error Detection (CCED) in Large Scale Machine Learning Systems
The complexity of Machine Learning (ML) systems increases each year, with current implementations of large language models or text-to-image generators having billions of parameters and requiring billions of arithmetic operations. As these systems are widely utilized, ensuring their reliable operation is becoming a design requirement. Traditional error detection mechanisms introduce circuit or time redundancy that significantly impacts system performance. An alternative is the use of Concurrent Error Detection (CED) schemes that operate in parallel with the system and exploit their properties to detect errors. CED is attractive for large ML systems because it can potentially reduce the cost of error detection. In this paper, we introduce Concurrent Classifier Error Detection (CCED), a scheme to implement CED in ML systems using a concurrent ML classifier to detect errors. CCED identifies a set of check signals in the main ML system and feeds them to the concurrent ML classifier that is trained to detect errors. The proposed CCED scheme has been implemented and evaluated on two widely used large-scale ML models: Contrastive Language Image Pretraining (CLIP) used for image classification and Bidirectional Encoder Representations from Transformers (BERT) used for natural language applications. The results show that more than 95 percent of the errors are detected when using a simple Random Forest classifier that is order of magnitude simpler than CLIP or BERT. These results illustrate the potential of CCED to implement error detection in large-scale ML models.
READ FULL TEXT