1 Introduction
We consider the algorithmic complexity of the problem of computing the partition function of the SherringtonKirkpatrick model with Gaussian couplings. The model is defined as follows. Fix a positive integer . Given a sequence and parameter called inverse temperature, the associated partition function is defined as
where denotes any spin configuration. The SherringtonKirkpatrick (SK for short) model corresponds to the case when are i.i.d. with standard normal distribution. Throughout the paper is assumed to be a constant independent of . The normalization is need to have a nontrivial free energy limit , the computation of which was a long journey starting with Parisi’s replica method, see recent book by Panchenko [Pan13] on this topic. The algorithmic problem, which is the focus of this paper, is the problem of computing when is given as a (random) input. The (worstcase) algorithmic problem of computing for arbitrary input is known to be #Phard for a much broader class of statistical physics models and the associated partition functions. The case of random inputs is a totally different story, however, as the classical method of reduction used for establishing the formal hardness in the worstcase sense, seems not applicable to the case of random inputs. The case of random (Gaussian) inputs
is the subject of the paper. Since the input to the model is a real valued vector
, the notion of algorithmic input needs to be discussed. We consider the model where the values (or more relevantly ) are computed up to a certain level of precision and the resulting approximations are defined as model input. Here is defined as . The algorithm designer is required to construct a polynomial time algorithm for computing exactly the partition function associated with input instead of the original input .Our main result shows that if such an algorithm succeeds with probability at least
then P=#P. Here the randomness is with respect to the randomness of the input . For our result to hold we assume that the number of precision bits is at least and at most . The logarithmic lower bound is required for technical reasons to ensure nearuniformity of the density function of the lognormal distribution. The polynomial upper bound on is required so that the problem instance itself has polynomial size, as otherwise the polynomiality of the algorithm’s running time is not sound.Our proof uses Lipton’s trick [Lip91] for establishing the average case hardness of computing the permanent of a matrix with entries chosen i.i.d. uniformly at random from a finite interval of integers. He observed that when the computation is done modulo appropriately chosen prime number , larger than the size of the matrix, the permanent can be written as a polynomial of an integer variable, corresponding to integer multiples of a random uniform input, see Proposition 3.3 below. Then solving for the coefficients of polynomial allows for computing the permanent of an arbitrary matrix, using the algorithm with random inputs as a subroutine. Thus the averagecase hardness of the problem is equivalent to the worstcase hardness of computing the permanent a matrix, which is known to be #Phard. Lipton’s result assumes the existence of an algorithm which succeeds with probability , and a similar requirement of probability of the success of algorithm is adopted for our result. Subsequently, the Liptons’s result was strengthened to assume only constant probability of success [FL92], and then inverse polynomial probability of success [CPS99]. Our assumption is similar to the one of Lipton’s. The exponent appears due to the degree of the associated polymomial, vs. for the permanent. Weakening this assumption on the algorithmic strength is left for future work.
The method we use relies on an idea similar Lipton’s, but several additional steps are needed. First we reduce the problem to the problem of computing the partition function associated with ”cuts”, appropriately defined. This is to avoid the necessity of dealing with two correlated random inputs and , depending on the sign of the product . Second, we need to establish that the density of the lognormal distribution is ”sufficiently” Lipschitz continuous in small intervals, and for this purpose we need to appropriately bound the tails of the lognormal distribution in scaling .
The proof technique utilized in this papers as well as the ones appearing in earlier similar results, including [Lip91] and [CPS99], is unfortunately too fragile to establish hardness results for algorithms which only aim at some approximation guarantees. Thus for example the average case hardness of computing to within a multiplicative factor , which is a common benchmark in the field of approximation algorithms, remains open. Another potential direction is to establish a formal average case hardness under a different computation model – BlumShubSmale machine operating over real valued inputs [BSS89],[BCSS97]. It is conceivable that techniques similar to the ones used here are extendable to this model of computation as well. There the challenge is that it is not clear what is the appropriate real valued analogue of .
There are some immediate extensions of our result, which we do not pursue for the sake of simplicity. The SK model can be replaced
by spin model interaction defined by
. The same trick of reducing this Hamiltonian to Hamiltonian on cuts works here as well. The assumption of Gaussianity also can be replaced by random variables with sufficiently well behaved density. At the same time, the current method cannot treat the Bernoulli case
with probability , and the average case hardness of this problem is a very interesting open question. It is worth noting that the average case hardness of the problem of computing a permanent of a matrix with entries is open as well. Another interesting open problems is the average case hardness of the problem of computing the ground state of the SK model, namely the problem of computing . Again the current method based on modulo prime computation is not applicable for this problem as the algebraic structure of the partition function is lost when one switches to the minimization. The approach of approximating the ground state by using a very low temperature (high value of), again seems useless, as one would need to establish the hardness of the problem of computing the partition function approximately, which as we mentioned above we are not capable of doing yet. The problem of computing the ground state of the SK model was raised recently as one of the open problems at the American Institute of Mathematics workshop ”Phase transitions in randomized computational problems” in June 2017
[Aim].We close this section with a list of notational conventions. and are respectively the set of all integers, the set of all nonnegative integers, and the set of all integers with . For any , denotes the largest integer which does not exceed . The function is assumed to have base .
2 Algorithmic formalism and the main result
The problem of computing is reducible to the problem of computing the partition function associated with cut problem defined below. For each spin configuration let
be the associated cut value. Observe that
implying that
Since is trivially computable, it suffices to compute . For convenience we use the same notation and define
dropping the factor which is absorbed by and flipping the sign, which is irrelevant due to the symmetry of normal distribution.
Denoting further by , we have
For arbitrary let
Our focus is on algorithms which compute exactly, in the sense to be made precise now, and which succeeds with high probability with respect to the randomness of . Since both and can take irational values, they cannot be used as formal algorithmic input. We adopt here a model of computation where the values are approximated up to a certain level of digital precision, specified by the algorithm designer, and these approximations are used as an input to the algorithm. Specifically, given real values , the designer fixes a positive integer and obtains first . The computational goal of the algorithm designer is to compute exactly, where . Namely, the algorithmic goal is to compute the exact value of the partition function defined in terms of approximations of .
For convenience, we now switch to a model with integer inputs. Let
(1) 
For each let denote the cardinality of the set . Let
(2)  
and thus we focus on computing instead. We note that is integer valued since . For every integer valued vector we define as in (2). Fixing any , a key observation is that
(3) 
is a polynomial in with degree
(4) 
We now state our main result which establishes hardness of computing .
Theorem 2.1.
Suppose the precision value satisfies , for any constant . Namely the number of bits in the precision is at least logarithmic and at most polynomial in . If there exists a polynomial in time algorithm which on input produces a value satisfying
for all sufficiently large , then .
In the above, the probability is with respect to the randomness of , which in turn is derived from the randomness of .
Let us comment on the significance of assumption . It basically says that the input to the algorithm are integers with binary description (logarithm) of at most polynomial length . This assumption is adopted purely for the purpose of staying within polynomial time algorithms, which require input of at most polynomial length. The logarithmic lower bound is a technical requirement needed for the proof details.
3 Proof of Theorem 2.1
We begin by verifying that the density of logNormal distribution is Lipschitz continuous within a finite interval and obtain a bound on the Lipschitz constant. Recall that are i.i.d. standard normal and .
Let denote the common density of .
Lemma 3.1.
For every satisfying and every , the following bound holds.
(5) 
Proof.
The density of is given by
Here denotes the standard normal random variable. It is easy to see that
(6) 
as since diverges faster than for every constant as . Also
(7) 
as . Both bounds are very crude of course, but suffice for our purposes.
We have for every
Now since for , we obtain that in the range
Applying these bounds, exponentiating, and using the assumption on the lower bound on and , we obtain
(8) 
∎
We use the following simple result regarding the number of primes between and
Lemma 3.2.
The number of primes between and is at least for all sufficiently large .
Proof.
We use the Prime Number Theorem (PNT), which says that the number of primes at most , denoted by satisfies
If the number of primes between and is at most then . But since then implying
contradicting PNT when is large enough. ∎
We now fix any prime satisfying
(9) 
and consider computation. Specifically for any we let denote so that takes values in . We may assume that the input is computed componentwise as well since is a sumproduct of of entries of . Similarly, for an algorithm , we denote by the output computed .
Let ) be i.i.d. chosen uniformly at random in . The key to our hardness result is the following average case hardness result of computing the partition function when the input is distributed i.i.d. uniformly at random from .
Proposition 3.3.
Suppose is a polynomial in time algorithm which on any input produces some output . Suppose satisfies
(10) 
Then .
The probability above is with respect to the randomness of .
Proof.
We will use as basis the #Phardness of computing for arbitrary inputs . Namely, if there exists a polynomial time algorithm for computing for any input with probability bounded away from zero as , then P=#P. Fix an arbitrary . A key observation is that for each positive integer which is not a multiple of , and each , is distributed uniformly at random in . We generate a sample and for each we feed to the algorithm . We recall that is defined by (4). The independence of for is maintained as well. Then by this observation, applying (10) we obtain
Here we use that . Namely the algorithm correctly computes the polynomial defined by (3) with , at values with probability at least .
We now use the fact that, given a polynomial , if we have access to values , then we can compute efficiently the coefficients by solving the following system of equations with unknowns:
The nondegeneracy of the matrix above is guaranteed, since if there is another vector , solving the same system, then the degree polynomial defined by coefficients has more than roots.
As a result we can compute efficiently
with probability . If now the algorithm is repeated
times and the value appeared the majority number of times, the probability that a wrong answer appears as majority is at most the probability that in a Binomial distribution with success probability
, the failure occurs at least half of the time, which by standard Chernoff bound is at most exponential in . Taking to be polynomial in , we obtain that our algorithm repeated polynomially many times succeeds in computing the partition function modulo with probability at least .Now we use a standard method which shows that computing efficiently modulo primes can be converted to an efficient computation of quantity of interest. The details can be found in [Lip91] and also in Jerrum [Jer06]. We repeat the argument here for completeness. Given an integer suppose have an algorithm for computing it modulo a prime . Fix two primes and . As they are coprimes, using the Euclidean algorithm we can find integers and such . Using our algorithm we find find residues and solving and . Letting , we have and . Since and are coprimes, this means .
We now use this method inductively. Applying Lemma 3.2, we can find a sequence of primes with for all . This can be done by brute force search in polynomial time since is at most polynomial in , by the assumption of the theorem. Here is the precision value assumed in the statement of the theorem. Using the method above we find modulo . But this product is larger than . We claim that with high probability this in itself is larger than the partition function , and thus the algorithm finds not just a remainder, but the value of the partition function itself. To show the claim, note that using a tail bound for standard normal , namely , we have
which for gives a bound . Thus the value of is at most with probability at least . Thus w.h.p. the partition function is at most sum of terms, each of which is a products of at most terms each bounded by . The value of the partition function is thus at most
The lower bound assumption on stated in the theorem implies that this bound is which is dominated by , as claimed.
Thus using this algorithm we find the value of the partition function itself with probability implying P=#P. ∎
Next we establish that the distribution of is nearly uniform.
Lemma 3.4.
The following bound holds for every
Proof.
Recall that are defined by (1). We have for every
We let
and consider separately the case and . For applying Lemma 3.1 with
we have for very and such that
Since , we obtain
Applying the value of and we have . Given an upper bound implied by (9), we have that the exponent is
It is easy to check that
which can be checked by verifying that implies . Thus the term above is
We obtain a bound
Similarly, we obtain for the same range of
Thus
as the sum above is at most the integral of the density function, and thus at most .
Finally, suppose . Applying (7)
We conclude that
Thus
completing the proof of the lemma. A lower bound is shown similarly. ∎
We now complete the proof of Theorem 2.1. By Lemma 3.4, the total variation distance between and is , where the upper bound of (9) was used. Thus we can couple with i.i.d. uniform random variables on integers in , such that
In particular, using the union bound, we can couple with a vector
with i.i.d. uniform distribution on integers in
, such thatThe coupling implies
and
Then if
we obtain that the algorithm satisfies
for all sufficiently large , contradicting Proposition 3.3. This completes the proof of the theorem.
References
 [Aim] AimPL, Phase transitions in randomized computational problems. Available at http://aimpl.org/phaserandom, 2017.
 [BCSS97] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, SpringerVerlag. New York, 1997.

[BSS89]
Lenore Blum, Mike Shub, Steve Smale, et al.,
On a theory of computation and complexity over the real numbers:
completeness, recursive functions and universal machines, Bulletin (New Series) of the American Mathematical Society 21 (1989), no. 1, 1–46.  [CPS99] JinYi Cai, Aduri Pavan, and D Sivakumar, On the hardness of permanent, Annual Symposium on Theoretical Aspects of Computer Science, Springer, 1999, pp. 90–99.
 [FL92] Uriel Feige and Carsten Lund, On the hardness of computing the permanent of random matrices, Proceedings of the twentyfourth annual ACM symposium on Theory of computing, ACM, 1992, pp. 643–654.
 [Jer06] M. Jerrum, Counting, sampling and integrating: algorithms and complexity. Lecture notes, Chapter 2., 2006.
 [Lip91] Richard Lipton, New directions in testing, Distributed Computing and Cryptography 2 (1991), 191–202.
 [Pan13] Dmitry Panchenko, The sherringtonkirkpatrick model, Springer Science & Business Media, 2013.
Comments
There are no comments yet.