Computing the full signature kernel as the solution of a Goursat problem
Recently there has been an increased interested in the development of kernel methods for sequential data. An inner product between the signatures of two paths can be shown to be a reproducing kernel and therefore suitable to be used in the context of data science. An efficient algorithm has been proposed to compute the signature kernel by truncating the two input signatures at a certain level, mainly focusing on the case of continuous paths of bounded variation. In this paper we show that the full (i.e. untruncated) signature kernel is the solution of a Goursat problem which can be efficiently computed by finite different schemes (python code can be found in https://github.com/crispitagorico/SignatureKernel). In practice, this result provides a kernel trick for computing the full signature kernel. Furthermore, we use a density argument to extend the previous analysis to the space of geometric rough paths, and prove using classical theory of integration of one-forms along rough paths that the full signature kernel solves a rough integral equation analogous to the PDE derived for the bounded variation case.
READ FULL TEXT