Computing the exact number of periodic orbits for planar flows

01/19/2021
by   Daniel S. Graça, et al.
0

In this paper, we consider the problem of determining the exact number of periodic orbits for polynomial planar flows. This problem is a variant of Hilbert's 16th problem. Using a natural definition of computability, we show that the problem is noncomputable on the one hand and, on the other hand, computable uniformly on the set of all structurally stable systems defined on the unit disk. We also prove that there is a family of polynomial planar systems which does not have a computable sharp upper bound on the number of its periodic orbits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset