Computing Smallest Convex Intersecting Polygons

08/16/2022
by   Antonios Antoniadis, et al.
0

A polygon C is an intersecting polygon for a set O of objects in the plane if C intersects each object in O, where the polygon includes its interior. We study the problem of computing the minimum-perimeter intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects. We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex polygons in the plane of total complexity n. Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter intersecting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far, polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon of lines or of disjoint segments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset