Computing Rule-Based Explanations of Machine Learning Classifiers using Knowledge Graphs

02/08/2022
by   Edmund Dervakos, et al.
0

The use of symbolic knowledge representation and reasoning as a way to resolve the lack of transparency of machine learning classifiers is a research area that lately attracts many researchers. In this work, we use knowledge graphs as the underlying framework providing the terminology for representing explanations for the operation of a machine learning classifier. In particular, given a description of the application domain of the classifier in the form of a knowledge graph, we introduce a novel method for extracting and representing black-box explanations of its operation, in the form of first-order logic rules expressed in the terminology of the knowledge graph.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro