Computing Probability Intervals Under Independency Constraints

03/27/2013 ∙ by Linda C. van der Gaag, et al. ∙ 0

Many AI researchers argue that probability theory is only capable of dealing with uncertainty in situations where a full specification of a joint probability distribution is available, and conclude that it is not suitable for application in knowledge-based systems. Probability intervals, however, constitute a means for expressing incompleteness of information. We present a method for computing such probability intervals for probabilities of interest from a partial specification of a joint probability distribution. Our method improves on earlier approaches by allowing for independency relationships between statistical variables to be exploited.



There are no comments yet.


page 1

page 2

page 3

page 4

page 5

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.