Computing Probability Intervals Under Independency Constraints

03/27/2013 ∙ by Linda C. van der Gaag, et al. ∙ 0

Many AI researchers argue that probability theory is only capable of dealing with uncertainty in situations where a full specification of a joint probability distribution is available, and conclude that it is not suitable for application in knowledge-based systems. Probability intervals, however, constitute a means for expressing incompleteness of information. We present a method for computing such probability intervals for probabilities of interest from a partial specification of a joint probability distribution. Our method improves on earlier approaches by allowing for independency relationships between statistical variables to be exploited.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

page 5

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.