Computing Canonical Bases of Modules of Univariate Relations

05/30/2017
by   Vincent Neiger, et al.
0

We study the computation of canonical bases of sets of univariate relations (p_1,...,p_m) ∈K[x]^m such that p_1 f_1 + ... + p_m f_m = 0; here, the input elements f_1,...,f_m are from a quotient K[x]^n/M, where M is a K[x]-module of rank n given by a basis M∈K[x]^n× n in Hermite form. We exploit the triangular shape of M to generalize a divide-and-conquer approach which originates from fast minimal approximant basis algorithms. Besides recent techniques for this approach, we rely on high-order lifting to perform fast modular products of polynomial matrices of the form PFM. Our algorithm uses O(m^ω-1D + n^ω D/m) operations in K, where D = deg((M)) is the K-vector space dimension of K[x]^n/M, O(·) indicates that logarithmic factors are omitted, and ω is the exponent of matrix multiplication. This had previously only been achieved for a diagonal matrix M. Furthermore, our algorithm can be used to compute the shifted Popov form of a nonsingular matrix within the same cost bound, up to logarithmic factors, as the previously fastest known algorithm, which is randomized.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset