Computing Betweenness Centrality in Link Streams

02/12/2021 ∙ by Frédéric Simard, et al. ∙ 0

Betweeness centrality is one of the most important concepts in graph analysis. It was recently extended to link streams, a graph generalization where links arrive over time. However, its computation raises non-trivial issues, due in particular to the fact that time is considered as continuous. We provide here the first algorithms to compute this generalized betweenness centrality, as well as several companion algorithms that have their own interest. They work in polynomial time and space, we illustrate them on typical examples, and we provide an implementation.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.