Computing all Space Curve Solutions of Polynomial Systems by Polyhedral Methods
A polyhedral method to solve a system of polynomial equations exploits its sparse structure via the Newton polytopes of the polynomials. We propose a hybrid symbolic-numeric method to compute a Puiseux series expansion for every space curve that is a solution of a polynomial system. The focus of this paper concerns the difficult case when the leading powers of the Puiseux series of the space curve are contained in the relative interior of a higher dimensional cone of the tropical prevariety. We show that this difficult case does not occur for polynomials with generic coefficients. To resolve this case, we propose to apply polyhedral end games to recover tropisms hidden in the tropical prevariety.
READ FULL TEXT