Computationally Efficient Robust Estimation of Sparse Functionals

02/24/2017
by   Simon S. Du, et al.
0

Many conventional statistical procedures are extremely sensitive to seemingly minor deviations from modeling assumptions. This problem is exacerbated in modern high-dimensional settings, where the problem dimension can grow with and possibly exceed the sample size. We consider the problem of robust estimation of sparse functionals, and provide a computationally and statistically efficient algorithm in the high-dimensional setting. Our theory identifies a unified set of deterministic conditions under which our algorithm guarantees accurate recovery. By further establishing that these deterministic conditions hold with high-probability for a wide range of statistical models, our theory applies to many problems of considerable interest including sparse mean and covariance estimation; sparse linear regression; and sparse generalized linear models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro