Computationally Efficient Multiscale Neural Networks Applied To Fluid Flow In Complex 3D Porous Media

02/10/2021
by   Javier Santos, et al.
16

The permeability of complex porous materials can be obtained via direct flow simulation, which provides the most accurate results, but is very computationally expensive. In particular, the simulation convergence time scales poorly as simulation domains become tighter or more heterogeneous. Semi-analytical models that rely on averaged structural properties (i.e. porosity and tortuosity) have been proposed, but these features only summarize the domain, resulting in limited applicability. On the other hand, data-driven machine learning approaches have shown great promise for building more general models by virtue of accounting for the spatial arrangement of the domains solid boundaries. However, prior approaches building on the Convolutional Neural Network (ConvNet) literature concerning 2D image recognition problems do not scale well to the large 3D domains required to obtain a Representative Elementary Volume (REV). As such, most prior work focused on homogeneous samples, where a small REV entails that that the global nature of fluid flow could be mostly neglected, and accordingly, the memory bottleneck of addressing 3D domains with ConvNets was side-stepped. Therefore, important geometries such as fractures and vuggy domains could not be well-modeled. In this work, we address this limitation with a general multiscale deep learning model that is able to learn from porous media simulation data. By using a coupled set of neural networks that view the domain on different scales, we enable the evaluation of large images in approximately one second on a single Graphics Processing Unit. This model architecture opens up the possibility of modeling domain sizes that would not be feasible using traditional direct simulation tools on a desktop computer.

READ FULL TEXT

page 4

page 6

page 7

page 8

page 12

page 16

page 17

page 18

research
04/22/2020

ML-LBM: Machine Learning Aided Flow Simulation in Porous Media

Simulation of fluid flow in porous media has many applications, from the...
research
09/19/2023

A learning-based multiscale model for reactive flow in porous media

We study solute-laden flow through permeable geological formations with ...
research
11/01/2021

OPF-Learn: An Open-Source Framework for Creating Representative AC Optimal Power Flow Datasets

Increasing levels of renewable generation motivate a growing interest in...
research
08/18/2019

Hybrid LBM-FVM and LBM-MCM Methods for Fluid Flow and Heat Transfer Simulation

The fluid flow and heat transfer problems encountered in industry applic...
research
08/09/2019

Efficient Simulation of Fluid Flow and Transport in Heterogeneous Media Using Graphics Processing Units (GPUs)

Networks of interconnected resistors, springs and beams, or pores are st...
research
06/09/2020

Fast Modeling and Understanding Fluid Dynamics Systems with Encoder-Decoder Networks

Is a deep learning model capable of understanding systems governed by ce...
research
07/14/2022

Finite strain porohyperelasticity: An asymptotic multiscale ALE-FSI approach supported by ANNs

The governing equations and numerical solution strategy to solve porohyp...

Please sign up or login with your details

Forgot password? Click here to reset