Computational Topology Techniques for Characterizing Time-Series Data

08/14/2017
by   Nicole Sanderson, et al.
0

Topological data analysis (TDA), while abstract, allows a characterization of time-series data obtained from nonlinear and complex dynamical systems. Though it is surprising that such an abstract measure of structure - counting pieces and holes - could be useful for real-world data, TDA lets us compare different systems, and even do membership testing or change-point detection. However, TDA is computationally expensive and involves a number of free parameters. This complexity can be obviated by coarse-graining, using a construct called the witness complex. The parametric dependence gives rise to the concept of persistent homology: how shape changes with scale. Its results allow us to distinguish time-series data from different systems - e.g., the same note played on different musical instruments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset